3.1.80 \(\int \frac {\sqrt {a+b x+c x^2}}{d-f x^2} \, dx\)

Optimal. Leaf size=266 \[ \frac {\sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 \sqrt {d} f}+\frac {\sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 \sqrt {d} f}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f} \]

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {990, 621, 206, 1033, 724} \begin {gather*} \frac {\sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 \sqrt {d} f}+\frac {\sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 \sqrt {d} f}-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x + c*x^2]/(d - f*x^2),x]

[Out]

-((Sqrt[c]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])])/f) + (Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*A
rcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a +
 b*x + c*x^2])])/(2*Sqrt[d]*f) + (Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*
Sqrt[d] + b*Sqrt[f])*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*Sqrt[d]*f)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 621

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 990

Int[Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]/((d_) + (f_.)*(x_)^2), x_Symbol] :> Dist[c/f, Int[1/Sqrt[a + b*x +
c*x^2], x], x] - Dist[1/f, Int[(c*d - a*f - b*f*x)/(Sqrt[a + b*x + c*x^2]*(d + f*x^2)), x], x] /; FreeQ[{a, b,
 c, d, f}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 1033

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[-(a*c), 2]}, Dist[h/2 + (c*g)/(2*q), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - (c*g)
/(2*q), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[-(a*c)]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+b x+c x^2}}{d-f x^2} \, dx &=\frac {\int \frac {c d+a f+b f x}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{f}-\frac {c \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{f}\\ &=-\frac {(2 c) \operatorname {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{f}+\frac {1}{2} \left (b-\frac {c d+a f}{\sqrt {d} \sqrt {f}}\right ) \int \frac {1}{\left (-\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx+\frac {1}{2} \left (b+\frac {c d+a f}{\sqrt {d} \sqrt {f}}\right ) \int \frac {1}{\left (\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx\\ &=-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}+\left (-b-\frac {c d+a f}{\sqrt {d} \sqrt {f}}\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )+\left (-b+\frac {c d+a f}{\sqrt {d} \sqrt {f}}\right ) \operatorname {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )\\ &=-\frac {\sqrt {c} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{f}+\frac {\sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f}+\frac {\sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 \sqrt {d} f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.17, size = 253, normalized size = 0.95 \begin {gather*} \frac {\sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+b \sqrt {d}-b \sqrt {f} x+2 c \sqrt {d} x}{2 \sqrt {a+x (b+c x)} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )+\sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+b \sqrt {d}+b \sqrt {f} x+2 c \sqrt {d} x}{2 \sqrt {a+x (b+c x)} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )-2 \sqrt {c} \sqrt {d} \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+x (b+c x)}}\right )}{2 \sqrt {d} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*x + c*x^2]/(d - f*x^2),x]

[Out]

(-2*Sqrt[c]*Sqrt[d]*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + x*(b + c*x)])] + Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*
f]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt[f] + 2*c*Sqrt[d]*x - b*Sqrt[f]*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt
[a + x*(b + c*x)])] + Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + 2*c*Sqrt[d]*x + b
*Sqrt[f]*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + x*(b + c*x)])])/(2*Sqrt[d]*f)

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.42, size = 273, normalized size = 1.03 \begin {gather*} \frac {\sqrt {c} \log \left (-2 \sqrt {c} f \sqrt {a+b x+c x^2}+b f+2 c f x\right )}{f}-\frac {\text {RootSum}\left [\text {$\#$1}^4 (-f)+2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d-4 \text {$\#$1} b \sqrt {c} d-a^2 f+b^2 d\&,\frac {\text {$\#$1}^2 b f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} c^{3/2} d \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )+b c d \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} a \sqrt {c} f \log \left (-\text {$\#$1}+\sqrt {a+b x+c x^2}-\sqrt {c} x\right )}{\text {$\#$1}^3 f-\text {$\#$1} a f-2 \text {$\#$1} c d+b \sqrt {c} d}\&\right ]}{2 f} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + b*x + c*x^2]/(d - f*x^2),x]

[Out]

(Sqrt[c]*Log[b*f + 2*c*f*x - 2*Sqrt[c]*f*Sqrt[a + b*x + c*x^2]])/f - RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1
+ 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^4 & , (b*c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*c^(3/2)*d*Log
[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 - 2*a*Sqrt[c]*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*
#1 + b*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1^2)/(b*Sqrt[c]*d - 2*c*d*#1 - a*f*#1 + f*#1^3) & ]/(
2*f)

________________________________________________________________________________________

fricas [B]  time = 98.76, size = 1139, normalized size = 4.28 \begin {gather*} \left [\frac {f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} + b^{2} + {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) - f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} + b^{2} + {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) + f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} + b^{2} - {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) - f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} + b^{2} - {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) + 2 \, \sqrt {c} \log \left (-8 \, c^{2} x^{2} - 8 \, b c x - b^{2} + 4 \, \sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {c} - 4 \, a c\right )}{4 \, f}, \frac {f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} + b^{2} + {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) - f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} + c d + a f}{d f^{2}}} + b^{2} + {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) + f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} \log \left (\frac {2 \, b c x + 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} + b^{2} - {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) - f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} \log \left (\frac {2 \, b c x - 2 \, \sqrt {c x^{2} + b x + a} b f \sqrt {-\frac {d f^{2} \sqrt {\frac {b^{2}}{d f^{3}}} - c d - a f}{d f^{2}}} + b^{2} - {\left (b f^{2} x + 2 \, a f^{2}\right )} \sqrt {\frac {b^{2}}{d f^{3}}}}{x}\right ) + 4 \, \sqrt {-c} \arctan \left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {-c}}{2 \, {\left (c^{2} x^{2} + b c x + a c\right )}}\right )}{4 \, f}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

[1/4*(f*sqrt((d*f^2*sqrt(b^2/(d*f^3)) + c*d + a*f)/(d*f^2))*log((2*b*c*x + 2*sqrt(c*x^2 + b*x + a)*b*f*sqrt((d
*f^2*sqrt(b^2/(d*f^3)) + c*d + a*f)/(d*f^2)) + b^2 + (b*f^2*x + 2*a*f^2)*sqrt(b^2/(d*f^3)))/x) - f*sqrt((d*f^2
*sqrt(b^2/(d*f^3)) + c*d + a*f)/(d*f^2))*log((2*b*c*x - 2*sqrt(c*x^2 + b*x + a)*b*f*sqrt((d*f^2*sqrt(b^2/(d*f^
3)) + c*d + a*f)/(d*f^2)) + b^2 + (b*f^2*x + 2*a*f^2)*sqrt(b^2/(d*f^3)))/x) + f*sqrt(-(d*f^2*sqrt(b^2/(d*f^3))
 - c*d - a*f)/(d*f^2))*log((2*b*c*x + 2*sqrt(c*x^2 + b*x + a)*b*f*sqrt(-(d*f^2*sqrt(b^2/(d*f^3)) - c*d - a*f)/
(d*f^2)) + b^2 - (b*f^2*x + 2*a*f^2)*sqrt(b^2/(d*f^3)))/x) - f*sqrt(-(d*f^2*sqrt(b^2/(d*f^3)) - c*d - a*f)/(d*
f^2))*log((2*b*c*x - 2*sqrt(c*x^2 + b*x + a)*b*f*sqrt(-(d*f^2*sqrt(b^2/(d*f^3)) - c*d - a*f)/(d*f^2)) + b^2 -
(b*f^2*x + 2*a*f^2)*sqrt(b^2/(d*f^3)))/x) + 2*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2 + 4*sqrt(c*x^2 + b*x + a)
*(2*c*x + b)*sqrt(c) - 4*a*c))/f, 1/4*(f*sqrt((d*f^2*sqrt(b^2/(d*f^3)) + c*d + a*f)/(d*f^2))*log((2*b*c*x + 2*
sqrt(c*x^2 + b*x + a)*b*f*sqrt((d*f^2*sqrt(b^2/(d*f^3)) + c*d + a*f)/(d*f^2)) + b^2 + (b*f^2*x + 2*a*f^2)*sqrt
(b^2/(d*f^3)))/x) - f*sqrt((d*f^2*sqrt(b^2/(d*f^3)) + c*d + a*f)/(d*f^2))*log((2*b*c*x - 2*sqrt(c*x^2 + b*x +
a)*b*f*sqrt((d*f^2*sqrt(b^2/(d*f^3)) + c*d + a*f)/(d*f^2)) + b^2 + (b*f^2*x + 2*a*f^2)*sqrt(b^2/(d*f^3)))/x) +
 f*sqrt(-(d*f^2*sqrt(b^2/(d*f^3)) - c*d - a*f)/(d*f^2))*log((2*b*c*x + 2*sqrt(c*x^2 + b*x + a)*b*f*sqrt(-(d*f^
2*sqrt(b^2/(d*f^3)) - c*d - a*f)/(d*f^2)) + b^2 - (b*f^2*x + 2*a*f^2)*sqrt(b^2/(d*f^3)))/x) - f*sqrt(-(d*f^2*s
qrt(b^2/(d*f^3)) - c*d - a*f)/(d*f^2))*log((2*b*c*x - 2*sqrt(c*x^2 + b*x + a)*b*f*sqrt(-(d*f^2*sqrt(b^2/(d*f^3
)) - c*d - a*f)/(d*f^2)) + b^2 - (b*f^2*x + 2*a*f^2)*sqrt(b^2/(d*f^3)))/x) + 4*sqrt(-c)*arctan(1/2*sqrt(c*x^2
+ b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)))/f]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.01, size = 1669, normalized size = 6.27

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x)

[Out]

1/2/(d*f)^(1/2)*((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f)^(1
/2)-1/2/f*ln(((x+(d*f)^(1/2)/f)*c+1/2*(b*f-2*(d*f)^(1/2)*c)/f)/c^(1/2)+((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^(1/
2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2))*c^(1/2)+1/4/(d*f)^(1/2)*ln(((x+(d*f)^(1/2)/f)*c+1/
2*(b*f-2*(d*f)^(1/2)*c)/f)/c^(1/2)+((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(
d*f)^(1/2)*b)/f)^(1/2))/c^(1/2)*b+1/2/f/((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d-(d*f)^(1/2)*b)/f+(b*f
-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+2*((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^
(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2))/(x+(d*f)^(1/2)/f))*b-1/2/(d*f)^(1/2)/((a*f+c*d-
(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d-(d*f)^(1/2)*b)/f+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+2*((a*f+c*d-
(d*f)^(1/2)*b)/f)^(1/2)*((x+(d*f)^(1/2)/f)^2*c+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*
b)/f)^(1/2))/(x+(d*f)^(1/2)/f))*a-1/2/(d*f)^(1/2)/f/((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d-(d*f)^(1/
2)*b)/f+(b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+2*((a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2)*((x+(d*f)^(1/2)/f)^2*c+(
b*f-2*(d*f)^(1/2)*c)*(x+(d*f)^(1/2)/f)/f+(a*f+c*d-(d*f)^(1/2)*b)/f)^(1/2))/(x+(d*f)^(1/2)/f))*c*d-1/2/(d*f)^(1
/2)*((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)-1/2/f*ln
(((x-(d*f)^(1/2)/f)*c+1/2*(b*f+2*(d*f)^(1/2)*c)/f)/c^(1/2)+((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*
f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2))*c^(1/2)-1/4/(d*f)^(1/2)*ln(((x-(d*f)^(1/2)/f)*c+1/2*(b*f+2*(d*
f)^(1/2)*c)/f)/c^(1/2)+((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b
)/f)^(1/2))/c^(1/2)*b+1/2/f/((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d+(d*f)^(1/2)*b)/f+(b*f+2*(d*f)^(1/
2)*c)*(x-(d*f)^(1/2)/f)/f+2*((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-
(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2))/(x-(d*f)^(1/2)/f))*b+1/2/(d*f)^(1/2)/((a*f+c*d+(d*f)^(1/2)*
b)/f)^(1/2)*ln((2*(a*f+c*d+(d*f)^(1/2)*b)/f+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+2*((a*f+c*d+(d*f)^(1/2)*
b)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2))
/(x-(d*f)^(1/2)/f))*a+1/2/(d*f)^(1/2)/f/((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*ln((2*(a*f+c*d+(d*f)^(1/2)*b)/f+(b*f
+2*(d*f)^(1/2)*c)*(x-(d*f)^(1/2)/f)/f+2*((a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(b*f+2*(d*f)^
(1/2)*c)*(x-(d*f)^(1/2)/f)/f+(a*f+c*d+(d*f)^(1/2)*b)/f)^(1/2))/(x-(d*f)^(1/2)/f))*c*d

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)',
see `assume?` for more details)Is ((c*sqrt(4*d*f))/(2*f^2)    +b/(2*f))    ^2    -(c*((b*sqrt(4*d*f))
         /(2*f)                  +(c*d)/f+a))     /f^2 positive, negative or zero?

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,x^2+b\,x+a}}{d-f\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x + c*x^2)^(1/2)/(d - f*x^2),x)

[Out]

int((a + b*x + c*x^2)^(1/2)/(d - f*x^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {\sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(sqrt(a + b*x + c*x**2)/(-d + f*x**2), x)

________________________________________________________________________________________